import time
import numpy as np
def _backtracking(x, tau, H, proxf, ix, beta=0.5, niterback=10):
r"""Backtracking
Line-search algorithm for finding step sizes in palm algorithms when
the Lipschitz constant of the operator is unknown (or expensive to
estimate).
"""
def ftilde(x, y, f, g, tau, ix):
xy = x - y[ix]
return f(*y) + np.dot(g, xy) + \
(1. / (2. * tau)) * np.linalg.norm(xy) ** 2
iiterback = 0
if ix == 0:
grad = H.gradx(x[ix])
else:
grad = H.grady(x[ix])
z = [x_.copy() for x_ in x]
while iiterback < niterback:
z[ix] = x[ix] - tau * grad
if proxf is not None:
z[ix] = proxf.prox(z[ix], tau)
ft = ftilde(z[ix], x, H, grad, tau, ix)
f = H(*z)
if f <= ft or tau < 1e-12:
break
tau *= beta
iiterback += 1
return z[ix], tau
[docs]def PALM(H, proxf, proxg, x0, y0, gammaf=1., gammag=1., beta=0.5,
niter=10, niterback=100, callback=None, show=False):
r"""Proximal Alternating Linearized Minimization
Solves the following minimization problem using the Proximal Alternating
Linearized Minimization (PALM) algorithm:
.. math::
\mathbf{x}\mathbf{,y} = \argmin_{\mathbf{x}, \mathbf{y}}
f(\mathbf{x}) + g(\mathbf{y}) + H(\mathbf{x}, \mathbf{y})
where :math:`f(\mathbf{x})` and :math:`g(\mathbf{y})` are any pair of
convex functions that have known proximal operators, and
:math:`H(\mathbf{x}, \mathbf{y})` is a smooth function.
Parameters
----------
H : :obj:`pyproximal.utils.bilinear.Bilinear`
Bilinear function
proxf : :obj:`pyproximal.ProxOperator`
Proximal operator of f function
proxg : :obj:`pyproximal.ProxOperator`
Proximal operator of g function
x0 : :obj:`numpy.ndarray`
Initial x vector
y0 : :obj:`numpy.ndarray`
Initial y vector
gammaf : :obj:`float`, optional
Positive scalar weight for ``f`` function update.
If ``None``, use backtracking
gammag : :obj:`float`, optional
Positive scalar weight for ``g`` function update.
If ``None``, use backtracking
beta : :obj:`float`, optional
Backtracking parameter (must be between 0 and 1)
niter : :obj:`int`, optional
Number of iterations of iterative scheme
niterback : :obj:`int`, optional
Max number of iterations of backtracking
callback : :obj:`callable`, optional
Function with signature (``callback(x)``) to call after each iteration
where ``x`` and ``y`` are the current model vectors
show : :obj:`bool`, optional
Display iterations log
Returns
-------
x : :obj:`numpy.ndarray`
Inverted x vector
y : :obj:`numpy.ndarray`
Inverted y vector
Notes
-----
PALM [1]_ can be expressed by the following recursion:
.. math::
\mathbf{x}^{k+1} = \prox_{c_k f}(\mathbf{x}^{k} -
\frac{1}{c_k}\nabla_x H(\mathbf{x}^{k}, \mathbf{y}^{k}))\\
\mathbf{y}^{k+1} = \prox_{d_k g}(\mathbf{y}^{k} -
\frac{1}{d_k}\nabla_y H(\mathbf{x}^{k+1}, \mathbf{y}^{k}))\\
Here :math:`c_k=\gamma_f L_x` and :math:`d_k=\gamma_g L_y`, where
:math:`L_x` and :math:`L_y` are the Lipschitz constant of :math:`\nabla_x H`
and :math:`\nabla_y H`, respectively. When such constants cannot be easily
computed, a back-tracking algorithm can be instead employed to find suitable
:math:`c_k` and :math:`d_k` parameters.
.. [1] Bolte, J., Sabach, S., and Teboulle, M. "Proximal alternating
linearized minimization for nonconvex and nonsmooth problems",
Mathematical Programming, vol. 146, pp. 459–494. 2014.
"""
if show:
tstart = time.time()
print('PALM algorithm\n'
'---------------------------------------------------------\n'
'Bilinear operator: %s\n'
'Proximal operator (f): %s\n'
'Proximal operator (g): %s\n'
'gammaf = %s\tgammag = %s\tniter = %d\n' %
(type(H), type(proxf), type(proxg), str(gammaf), str(gammag), niter))
head = ' Itn x[0] y[0] f g H ck dk'
print(head)
backtrackingf, backtrackingg = False, False
if gammaf is None:
backtrackingf = True
tauf = 1.
ck = 0.
if gammaf is None:
backtrackingg = True
taug = 1.
dk = 0.
x, y = x0.copy(), y0.copy()
for iiter in range(niter):
# x step
if not backtrackingf:
ck = gammaf * H.ly(y)
x = x - (1. / ck) * H.gradx(x)
if proxf is not None:
x = proxf.prox(x, 1. / ck)
else:
x, tauf = _backtracking([x, y], tauf, H,
proxf, 0, beta=beta,
niterback=niterback)
# update x parameter in H function
H.updatex(x.copy())
# y step
if not backtrackingg:
dk = gammag * H.lx(x)
y = y - (1. / dk) * H.grady(y)
if proxg is not None:
y = proxg.prox(y, 1. / dk)
else:
y, taug = _backtracking([x, y], tauf, H,
proxf, 1, beta=beta,
niterback=niterback)
# update y parameter in H function
H.updatey(y.copy())
# run callback
if callback is not None:
callback(x, y)
if show:
pf = proxf(x) if proxf is not None else 0.
pg = proxg(y) if proxg is not None else 0.
if iiter < 10 or niter - iiter < 10 or iiter % (niter // 10) == 0:
msg = '%6g %5.5e %5.2e %5.2e %5.2e %5.2e %5.2e %5.2e' % \
(iiter + 1, x[0], y[0], pf if pf is not None else 0.,
pg if pg is not None else 0., H(x, y), ck, dk)
print(msg)
if show:
print('\nTotal time (s) = %.2f' % (time.time() - tstart))
print('---------------------------------------------------------\n')
return x, y
[docs]def iPALM(H, proxf, proxg, x0, y0, gammaf=1., gammag=1.,
a=[1., 1.], b=None, beta=0.5, niter=10, niterback=100,
callback=None, show=False):
r"""Inertial Proximal Alternating Linearized Minimization
Solves the following minimization problem using the Inertial Proximal
Alternating Linearized Minimization (iPALM) algorithm:
.. math::
\mathbf{x}\mathbf{,y} = \argmin_{\mathbf{x}, \mathbf{y}}
f(\mathbf{x}) + g(\mathbf{y}) + H(\mathbf{x}, \mathbf{y})
where :math:`f(\mathbf{x})` and :math:`g(\mathbf{y})` are any pair of
convex functions that have known proximal operators, and
:math:`H(\mathbf{x}, \mathbf{y})` is a smooth function.
Parameters
----------
H : :obj:`pyproximal.utils.bilinear.Bilinear`
Bilinear function
proxf : :obj:`pyproximal.ProxOperator`
Proximal operator of f function
proxg : :obj:`pyproximal.ProxOperator`
Proximal operator of g function
x0 : :obj:`numpy.ndarray`
Initial x vector
y0 : :obj:`numpy.ndarray`
Initial y vector
gammaf : :obj:`float`, optional
Positive scalar weight for ``f`` function update.
If ``None``, use backtracking
gammag : :obj:`float`, optional
Positive scalar weight for ``g`` function update.
If ``None``, use backtracking
a : :obj:`list`, optional
Inertial parameters (:math:`a \in [0, 1]`)
beta : :obj:`float`, optional
Backtracking parameter (must be between 0 and 1)
niter : :obj:`int`, optional
Number of iterations of iterative scheme
niterback : :obj:`int`, optional
Max number of iterations of backtracking
callback : :obj:`callable`, optional
Function with signature (``callback(x)``) to call after each iteration
where ``x`` and ``y`` are the current model vectors
show : :obj:`bool`, optional
Display iterations log
Returns
-------
x : :obj:`numpy.ndarray`
Inverted x vector
y : :obj:`numpy.ndarray`
Inverted y vector
Notes
-----
iPALM [1]_ can be expressed by the following recursion:
.. math::
\mathbf{x}_z^k = \mathbf{x}^k + \alpha_x (\mathbf{x}^k - \mathbf{x}^{k-1})\\
\mathbf{x}^{k+1} = \prox_{c_k f}(\mathbf{x}_z^k -
\frac{1}{c_k}\nabla_x H(\mathbf{x}_z^k, \mathbf{y}^{k}))\\
\mathbf{y}_z^k = \mathbf{y}^k + \alpha_y (\mathbf{y}^k - \mathbf{y}^{k-1})\\
\mathbf{y}^{k+1} = \prox_{d_k g}(\mathbf{y}_z^k -
\frac{1}{d_k}\nabla_y H(\mathbf{x}^{k+1}, \mathbf{y}_z^k))
Here :math:`c_k=\gamma_f L_x` and :math:`d_k=\gamma_g L_y`, where
:math:`L_x` and :math:`L_y` are the Lipschitz constant of :math:`\nabla_x H`
and :math:`\nabla_y H`, respectively. When such constants cannot be easily
computed, a back-tracking algorithm can be instead employed to find suitable
:math:`c_k` and :math:`d_k` parameters.
Finally, note that we have implemented the version of iPALM where :math:`\beta_x=\alpha_x`
and :math:`\beta_y=\alpha_y`.
.. [1] Pock, T., and Sabach, S. "Inertial Proximal
Alternating Linearized Minimization (iPALM) for Nonconvex and
Nonsmooth Problems", SIAM Journal on Imaging Sciences, vol. 9. 2016.
"""
if show:
tstart = time.time()
print('iPALM algorithm\n'
'---------------------------------------------------------\n'
'Bilinear operator: %s\n'
'Proximal operator (f): %s\n'
'Proximal operator (g): %s\n'
'gammaf = %s\tgammag = %s\n'
'a = %s\tniter = %d\n' %
(type(H), type(proxf), type(proxg), str(gammaf), str(gammag), str(a), niter))
head = ' Itn x[0] y[0] f g H ck dk'
print(head)
backtrackingf, backtrackingg = False, False
if gammaf is None:
backtrackingf = True
tauf = 1.
ck = 0.
if gammaf is None:
backtrackingg = True
taug = 1.
dk = 0.
x, y = x0.copy(), y0.copy()
xold, yold = x0.copy(), y0.copy()
for iiter in range(niter):
# x step
z = x + a[0] * (x - xold)
if not backtrackingf:
ck = gammaf * H.ly(y)
xold = x.copy()
x = z - (1. / ck) * H.gradx(z)
if proxf is not None:
x = proxf.prox(x, 1. / ck)
else:
xold = x.copy()
x, tauf = _backtracking([z, y], tauf, H,
proxf, 0, beta=beta,
niterback=niterback)
# update x parameter in H function
H.updatex(x.copy())
# y step
z = y + a[1] * (y - yold)
if not backtrackingg:
dk = gammag * H.lx(x)
yold = y.copy()
y = z - (1. / dk) * H.grady(z)
if proxg is not None:
y = proxg.prox(y, 1. / dk)
else:
yold = y.copy()
y, taug = _backtracking([x, z], tauf, H,
proxf, 1, beta=beta,
niterback=niterback)
# update y parameter in H function
H.updatey(y.copy())
# run callback
if callback is not None:
callback(x, y)
if show:
pf = proxf(x) if proxf is not None else 0.
pg = proxg(y) if proxg is not None else 0.
if iiter < 10 or niter - iiter < 10 or iiter % (niter // 10) == 0:
msg = '%6g %5.5e %5.2e %5.2e %5.2e %5.2e %5.2e %5.2e' % \
(iiter + 1, x[0], y[0], pf if pf is not None else 0.,
pg if pg is not None else 0., H(x, y), ck, dk)
print(msg)
if show:
print('\nTotal time (s) = %.2f' % (time.time() - tstart))
print('---------------------------------------------------------\n')
return x, y