Source code for pyproximal.proximal.Nuclear
import numpy as np
from pylops.optimization.cls_sparsity import _softthreshold
from pyproximal.ProxOperator import _check_tau
from pyproximal.projection import NuclearBallProj
from pyproximal import ProxOperator
[docs]class Nuclear(ProxOperator):
r"""Nuclear norm proximal operator.
The nuclear norm is defined as
:math:`\sigma\|\mathbf{X}\|_* = \sigma \sum_i \lambda_i` where :math:`\mathbf{X}`
is a matrix of size :math:`M \times N` and :math:`\lambda_i` is the *i*:th
singular value of :math:`\mathbf{X}`, where :math:`i=1,\ldots, \min(M, N)`.
The *weighted* nuclear norm, with the positive weight vector :math:`\boldsymbol\sigma`, is
defined as
.. math::
\|\mathbf{X}|\|_{{\boldsymbol\sigma},*} = \sum_i \sigma_i\lambda_i(\mathbf{X}) .
Parameters
----------
dim : :obj:`tuple`
Size of matrix :math:`\mathbf{X}`
sigma : :obj:`float` or :obj:`numpy.ndarray`, optional
Multiplicative coefficient of the nuclear norm penalty. If ``sigma`` is a float
the same penalty is applied for all singular values. If instead ``sigma`` is an
array the weight ``sigma[i]`` will be applied to the *i*:th singular value.
This is often referred to as the *weighted nuclear norm*.
Notes
-----
The nuclear norm proximal operator is:
.. math::
\prox_{\tau \sigma \|\cdot\|_*}(\mathbf{X}) =
\mathbf{U} \diag \{ \prox_{\tau \sigma \|\cdot\|_1}(\boldsymbol\lambda) \} \mathbf{V}^H
where :math:`\mathbf{U}`, :math:`\boldsymbol\lambda`, and
:math:`\mathbf{V}` define the SVD of :math:`X`.
The weighted nuclear norm is convex if the sequence :math:`\{\sigma_i\}_i` is
non-ascending, but is in general non-convex; however, when the weights are
non-descending it can be shown that applying the soft-thresholding operator on the
singular values still yields a fixed point (w. r. t. a specific algorithm), see
[1]_ for details.
.. [1] Gu et al. "Weighted Nuclear Norm Minimization with Application to Image
Denoising", In the IEEE Conference on Computer Vision and Pattern Recognition,
2862-2869, 2014.
"""
def __init__(self, dim, sigma=1.):
super().__init__(None, False)
self.dim = dim
self.sigma = sigma
def __call__(self, x):
X = x.reshape(self.dim)
eigs = np.linalg.eigvalsh(X.T @ X)
eigs[eigs < 0] = 0 # ensure all eigenvalues at positive
return np.sum(np.flip(self.sigma) * np.sqrt(eigs))
@_check_tau
def prox(self, x, tau):
X = x.reshape(self.dim)
U, S, Vh = np.linalg.svd(X, full_matrices=False)
sigma = self.sigma if np.isscalar(self.sigma) else self.sigma[:S.size]
Sth = _softthreshold(S, tau * sigma)
X = np.dot(U * Sth, Vh)
return X.ravel()
[docs]class NuclearBall(ProxOperator):
r"""Nuclear ball proximal operator.
Proximal operator of the Nuclear ball: :math:`N_{r} =
\{ \mathbf{X}: \|\mathbf{X}\|_* \leq r \}`.
Parameters
----------
dims : :obj:`tuple`
Dimensions of input matrix
radius : :obj:`float`
Radius
maxiter : :obj:`int`, optional
Maximum number of iterations used by :func:`scipy.optimize.bisect`
xtol : :obj:`float`, optional
Absolute tolerance of :func:`scipy.optimize.bisect`
Notes
-----
As the Nuclear ball is an indicator function, the proximal operator
corresponds to its orthogonal projection
(see :class:`pyproximal.projection.NuclearBallProj` for details.
"""
def __init__(self, dims, radius, maxiter=100, xtol=1e-5):
super().__init__(None, False)
self.dims = dims
self.radius = radius
self.maxiter = maxiter
self.xtol = xtol
self.ball = NuclearBallProj(min(self.dims), self.radius,
self.maxiter, self.xtol)
def __call__(self, x, tol=1e-5):
return np.linalg.norm(x.reshape(self.dims), ord='nuc') - self.radius < tol
@_check_tau
def prox(self, x, tau):
y = self.ball(x.reshape(self.dims))
return y.ravel()