Source code for pyproximal.utils.bilinear

import numpy as np


[docs]class BilinearOperator(): r"""Common interface for bilinear operator of a function. Bilinear operator template class. A user must subclass it and implement the following methods: - ``gradx``: a method evaluating the gradient over :math:`\mathbf{x}`: :math:`\nabla_x H` - ``grady``: a method evaluating the gradient over :math:`\mathbf{y}`: :math:`\nabla_y H` - ``grad``: a method returning the stacked gradient vector over :math:`\mathbf{x},\mathbf{y}`: :math:`[\nabla_x H`, [\nabla_y H]` - ``lx``: Lipschitz constant of :math:`\nabla_x H` - ``ly``: Lipschitz constant of :math:`\nabla_y H` Two additional methods (``updatex`` and ``updatey``) are provided to update the :math:`\mathbf{x}` and :math:`\mathbf{y}` internal variables. It is user responsability to choose when to invoke such method (i.e., when to update the internal variables). Notes ----- A bilinear operator is defined as a differentiable nonlinear function :math:`H(x,y)` that is linear in each of its components indipendently, i.e, :math:`\mathbf{H_x}(y)\mathbf{x}` and :math:`\mathbf{H_y}(y)\mathbf{x}`. """ def __init__(self): pass def __call__(self, x, y): pass def gradx(self, x): pass def grady(self, y): pass def grad(self, y): pass def lx(self, x): pass def ly(self, y): pass def updatex(self, x): """Update x variable (to be used to update the internal variable x) """ self.x = x def updatey(self, y): """Update y variable (to be used to update the internal variable y) """ self.y = y def updatexy(self, xy): pass
[docs]class LowRankFactorizedMatrix(BilinearOperator): r"""Low-Rank Factorized Matrix operator. Bilinear operator representing the L2 norm of a Low-Rank Factorized Matrix defined as: :math:`H(\mathbf{X}, \mathbf{Y}) = \frac{1}{2} \|\mathbf{Op}(\mathbf{X}\mathbf{Y}) - \mathbf{d}\|_2^2`, where :math:`\mathbf{X}` is a matrix of size :math:`n \times k`, :math:`\mathbf{Y}` is a matrix of size :math:`k \times m`, and :math:`\mathbf{Op}` is a linear operator of size :math:`p \times n`. Parameters ---------- X : :obj:`numpy.ndarray` Left-matrix of size :math:`n \times k` Y : :obj:`numpy.ndarray` Right-matrix of size :math:`k \times m` d : :obj:`numpy.ndarray` Data vector Op : :obj:`pylops.LinearOperator`, optional Linear operator Notes ----- The Low-Rank Factorized Matrix operator has gradient with respect to x equal to: .. math:: \nabla_x H(\mathbf{x};\ \mathbf{y}) = \mathbf{Op}^H(\mathbf{Op}(\mathbf{X}\mathbf{Y}) - \mathbf{d})\mathbf{Y}^H and gradient with respect to y equal to: .. math:: \nabla_y H(\mathbf{y}; \mathbf{x}) = \mathbf{X}^H \mathbf{Op}^H(\mathbf{Op} (\mathbf{X}\mathbf{Y}) - \mathbf{d}) Note that in both cases, the currently stored :math`\mathbf{x}`/:math`\mathbf{y}` variable is used for the second variable within parenthesis (after ;). """ def __init__(self, X, Y, d, Op=None): self.n, self.k = X.shape self.m = Y.shape[1] self.x = X self.y = Y self.d = d self.Op = Op self.sizex = self.n * self.k self.sizey = self.m * self.k def __call__(self, x, y=None): if y is None: x, y = x[:self.n * self.k], x[self.n * self.k:] xold = self.x.copy() self.updatex(x) res = self.d - self._matvecy(y) self.updatex(xold) return np.linalg.norm(res)**2 / 2. def _matvecx(self, x): X = x.reshape(self.n, self.k) X = X @ self.y.reshape(self.k, self.m) if self.Op is not None: X = self.Op @ X.ravel() return X.ravel() def _matvecy(self, y): Y = y.reshape(self.k, self.m) X = self.x.reshape(self.n, self.k) @ Y if self.Op is not None: X = self.Op @ X.ravel() return X.ravel() def matvec(self, x): if self.n == self.m: raise NotImplementedError('Since n=m, this method' 'cannot distinguish automatically' 'between _matvecx and _matvecy. ' 'Explicitely call either of those two methods.') if x.size == self.sizex: y = self._matvecx(x) else: y = self._matvecy(x) return y def lx(self, x): if self.Op is not None: ValueError('lx cannot be computed when using Op') X = x.reshape(self.n, self.k) return np.linalg.norm(np.conj(X).T @ X, 'fro') def ly(self, y): if self.Op is not None: ValueError('ly cannot be computed when using Op') Y = y.reshape(self.k, self.m) return np.linalg.norm(Y @ np.conj(Y).T, 'fro') def gradx(self, x): r = self.d - self._matvecx(x) if self.Op is not None: r = (self.Op.H @ r).reshape(self.n, self.m) else: r = r.reshape(self.n, self.m) g = -r @ np.conj(self.y.reshape(self.k, self.m).T) return g.ravel() def grady(self, y): r = self.d - self._matvecy(y) if self.Op is not None: r = (self.Op.H @ r.ravel()).reshape(self.n, self.m) else: r = r.reshape(self.n, self.m) g = -np.conj(self.x.reshape(self.n, self.k).T) @ r return g.ravel() def grad(self, x): gx = self.gradx(x[:self.n * self.k]) gy = self.grady(x[self.n * self.k:]) g = np.hstack([gx, gy]) return g def updatexy(self, x): self.updatex(x[:self.n * self.k]) self.updatey(x[self.n * self.k:])