Source code for pyproximal.proximal.VStack
import numpy as np
from pyproximal.ProxOperator import _check_tau
from pyproximal import ProxOperator
[docs]class VStack(ProxOperator):
r"""Vertical stacking.
Stack a set of N proximal operators vertically. This operator can be used
for separable inputs, where the overall proximal operator can be computed
as the stack of proximal operators on parts of the input vector.
Parameters
----------
ops : :obj:`list`
Proximal operators to be stacked
nn : :obj:`list`, optional
Size of each portion of the input vector (to be used when different
portions are in consecutive order)
restr : :obj:`list`, optional
List of
:class:`pylops.Restriction` operators extracting the subset of
interest (to be used when different portions are not in consecutive
order). It is user responsibility to ensure that all elements of the
input vector are used exactly once)
Notes
-----
Given an input vector :math:`\mathbf{x}` to which a number of :math:`N`
functions are applied to different portions of the vector as:
.. math::
f(\mathbf{x}) = \sum_{i=1}^N f_i(\mathbf{x}_i)
the related proximal operator becomes:
.. math::
\prox_{\tau f}(\mathbf{x}) = \left(
\prox_{\tau f_1}(\mathbf{x}_1), \ldots,
\tau f_N(\mathbf{x}_N) \right)
"""
def __init__(self, ops, nn=None, restr=None):
if nn is None and restr is None:
raise ValueError('provide either nn or restr')
self.ops = ops
if nn is not None:
self.nn = nn
cum_nn = np.cumsum(nn)
self.xin = cum_nn[:-1]
self.xin = np.insert(self.xin, 0, 0)
self.xend = cum_nn
# store required size of input
self.nx = cum_nn[-1]
else:
self.restr = restr
# store required size of input
self.nx = np.sum([restr.iava.size for restr in self.restr])
def __call__(self, x):
if x.size != self.nx:
raise ValueError(f'x must have size {self.nx}, instead the provided x has size {x.size}')
f = 0.
if hasattr(self, 'nn'):
for iop, op in enumerate(self.ops):
f += op(x[self.xin[iop]:self.xend[iop]])
else:
for op, restr in zip(self.ops, self.restr):
f += op(restr.matvec(x))
return f
@_check_tau
def prox(self, x, tau):
if x.size != self.nx:
raise ValueError(f'x must have size {self.nx}, instead the provided x has size {x.size}')
if hasattr(self, 'nn'):
f = np.hstack([op.prox(x[self.xin[iop]:self.xend[iop]], tau)
for iop, op in enumerate(self.ops)])
else:
f = np.zeros_like(x)
for op, restr in zip(self.ops, self.restr):
f[restr.iava] = op.prox(restr.matvec(x), tau)
return f
def grad(self, x):
if x.size != self.nx:
raise ValueError(f'x must have size {self.nx}, instead the provided x has size {x.size}')
if hasattr(self, 'nn'):
f = np.hstack([op.grad(x[self.xin[iop]:self.xend[iop]])
for iop, op in enumerate(self.ops)])
else:
f = np.zeros_like(x)
for op, restr in zip(self.ops, self.restr):
f[restr.iava] = op.grad(restr.matvec(x))
return f