Low-Rank completion via SVD#

In this tutorial we will present an example of low-rank matrix completion. Contrarily to most of the examples in this library (and PyLops), the regularizer is here applied to a matrix, which is obtained by reshaping the model vector that we wish to solve for.

In this example we will consider the following forward problem:

\[\mathbf{y} = \mathbf{R} \mathbf{x}\]

where \(\mathbf{R}\) is a restriction operator, which applied to \(\mathbf{x}=\operatorname{vec}(\mathbf{X})\), the vectorized version of a 2d image of size \(n \times m\), selects a reasonably small number of samples \(p \ll nm\) that form the vector \(\mathbf{y}\). Note that any other modelling operator could be used here, for example a 2D convolutional operator in the case of deblurring or a 2D FFT plus restriction in the case of MRI scanning.

The problem we want to solve can be mathematically described as:

\[\argmin_\mathbf{x} \frac{1}{2}\|\mathbf{y}-\mathbf{Rx}\|_2^2 + \mu \|\mathbf{X}\|_*\]

or

\[\argmin_\mathbf{x} \frac{1}{2}\|\mathbf{y}-\mathbf{Rx}\|_2^2 \; \text{s.t.} \; \|\mathbf{X}\|_* < \mu\]

where \(\|\mathbf{X}\|_*=\sum_i \sigma_i\) is the nuclear norm of \(\mathbf{X}\) (i.e., the sum of the singular values).

# sphinx_gallery_thumbnail_number = 2
import numpy as np
import matplotlib.pyplot as plt
import pylops
import pyproximal

from scipy import misc

np.random.seed(0)
plt.close('all')

Let’s start by loading a sample image

# Load image
X = misc.ascent()
X = X/np.max(X)
ny, nx = X.shape
/home/docs/checkouts/readthedocs.org/user_builds/pyproximal/checkouts/stable/tutorials/lowrankcompletion.py:52: DeprecationWarning: scipy.misc.ascent has been deprecated in SciPy v1.10.0; and will be completely removed in SciPy v1.12.0. Dataset methods have moved into the scipy.datasets module. Use scipy.datasets.ascent instead.
  X = misc.ascent()

We can now define a pylops.Restriction operator and look at how the singular values of our image change when we remove some of its sample.

# Restriction operator
sub = 0.4
nsub = int(ny*nx*sub)
iava = np.random.permutation(np.arange(ny*nx))[:nsub]

Rop = pylops.Restriction(ny*nx, iava)

# Data
y = Rop * X.ravel()

# Masked data
Y = (Rop.H * Rop * X.ravel()).reshape(ny, nx)

# SVD of true and masked data
Ux, Sx, Vhx = np.linalg.svd(X, full_matrices=False)
Uy, Sy, Vhy = np.linalg.svd(Y, full_matrices=False)

plt.figure()
plt.semilogy(Sx, 'k', label=r'$||X||_*$=%.2f' % np.sum(Sx))
plt.semilogy(Sy, 'r', label=r'$||Y||_*$=%.2f' % np.sum(Sy))
plt.legend()
plt.tight_layout()
lowrankcompletion

We observe that removing some samples from the image has led to an overall increase in the singular values of \(\mathbf{X}\), especially those that are originally very small. As a consequence the nuclear norm of \(\mathbf{Y}\) (the masked image) is larger than that of \(\mathbf{X}\).

Let’s now set up the inverse problem using the Proximal gradient algorithm

mu = .8
f = pyproximal.L2(Rop, y)
g = pyproximal.Nuclear((ny, nx), mu)

Xpg = pyproximal.optimization.primal.ProximalGradient(f, g, np.zeros(ny*nx), acceleration='vandenberghe',
                                                      tau=1., niter=100, show=True)
Xpg = Xpg.reshape(ny, nx)

# Recompute SVD and see how the singular values look like
Upg, Spg, Vhpg = np.linalg.svd(Xpg, full_matrices=False)
Accelerated Proximal Gradient
---------------------------------------------------------
Proximal operator (f): <class 'pyproximal.proximal.L2.L2'>
Proximal operator (g): <class 'pyproximal.proximal.Nuclear.Nuclear'>
tau = 1.0       beta=5.000000e-01
epsg = 1.0      niter = 100
niterback = 100 acceleration = vandenberghe

   Itn       x[0]          f           g       J=f+eps*g       tau
     1   2.80234e-01   9.762e+01   1.314e+03   1.412e+03   1.000e+00
     2   2.79868e-01   9.629e+01   1.223e+03   1.319e+03   1.000e+00
     3   2.89674e-01   9.359e+01   1.129e+03   1.222e+03   1.000e+00
     4   2.94030e-01   9.019e+01   1.035e+03   1.125e+03   1.000e+00
     5   3.00071e-01   8.645e+01   9.438e+02   1.030e+03   1.000e+00
     6   3.07346e-01   8.300e+01   8.565e+02   9.395e+02   1.000e+00
     7   3.16868e-01   8.025e+01   7.742e+02   8.545e+02   1.000e+00
     8   3.16858e-01   7.828e+01   6.988e+02   7.770e+02   1.000e+00
     9   3.13267e-01   7.674e+01   6.331e+02   7.098e+02   1.000e+00
    10   3.13406e-01   7.566e+01   5.796e+02   6.553e+02   1.000e+00
    11   3.14952e-01   7.515e+01   5.400e+02   6.151e+02   1.000e+00
    21   3.06372e-01   7.479e+01   4.884e+02   5.631e+02   1.000e+00
    31   3.12195e-01   7.520e+01   4.869e+02   5.621e+02   1.000e+00
    41   3.11005e-01   7.515e+01   4.868e+02   5.620e+02   1.000e+00
    51   3.11186e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    61   3.11239e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    71   3.11139e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    81   3.11222e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    91   3.11167e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    92   3.11171e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    93   3.11176e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    94   3.11181e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    95   3.11186e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    96   3.11191e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    97   3.11194e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    98   3.11197e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
    99   3.11199e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00
   100   3.11199e-01   7.518e+01   4.868e+02   5.620e+02   1.000e+00

Total time (s) = 12.12
---------------------------------------------------------

Let’s do the same with the constrained version

mu1 = 0.8 * np.sum(Sx)
g = pyproximal.proximal.NuclearBall((ny, nx), mu1)

Xpgc = pyproximal.optimization.primal.ProximalGradient(f, g, np.zeros(ny*nx), acceleration='vandenberghe',
                                                       tau=1., niter=100, show=True)
Xpgc = Xpgc.reshape(ny, nx)

# Recompute SVD and see how the singular values look like
Upgc, Spgc, Vhpgc = np.linalg.svd(Xpgc, full_matrices=False)
Accelerated Proximal Gradient
---------------------------------------------------------
Proximal operator (f): <class 'pyproximal.proximal.L2.L2'>
Proximal operator (g): <class 'pyproximal.proximal.Nuclear.NuclearBall'>
tau = 1.0       beta=5.000000e-01
epsg = 1.0      niter = 100
niterback = 100 acceleration = vandenberghe

   Itn       x[0]          f           g       J=f+eps*g       tau
     1   1.90702e-01   1.162e+03   0.000e+00   1.162e+03   1.000e+00
     2   2.53265e-01   6.432e+02   0.000e+00   6.432e+02   1.000e+00
     3   2.86505e-01   3.437e+02   1.000e+00   3.447e+02   1.000e+00
     4   3.04911e-01   1.802e+02   0.000e+00   1.802e+02   1.000e+00
     5   3.12726e-01   9.470e+01   1.000e+00   9.570e+01   1.000e+00
     6   3.15842e-01   5.078e+01   1.000e+00   5.178e+01   1.000e+00
     7   3.17937e-01   2.813e+01   0.000e+00   2.813e+01   1.000e+00
     8   3.18902e-01   1.623e+01   1.000e+00   1.723e+01   1.000e+00
     9   3.18828e-01   9.769e+00   0.000e+00   9.769e+00   1.000e+00
    10   3.19034e-01   6.129e+00   0.000e+00   6.129e+00   1.000e+00
    11   3.19980e-01   3.995e+00   1.000e+00   4.995e+00   1.000e+00
    21   3.25186e-01   1.995e-01   0.000e+00   1.995e-01   1.000e+00
    31   3.25431e-01   2.777e-02   1.000e+00   1.028e+00   1.000e+00
    41   3.25451e-01   4.893e-03   1.000e+00   1.005e+00   1.000e+00
    51   3.25465e-01   7.274e-04   0.000e+00   7.274e-04   1.000e+00
    61   3.25484e-01   4.032e-05   0.000e+00   4.032e-05   1.000e+00
    71   3.25491e-01   7.626e-09   1.000e+00   1.000e+00   1.000e+00
    81   3.25490e-01   9.189e-09   0.000e+00   9.189e-09   1.000e+00
    91   3.25490e-01   1.053e-08   0.000e+00   1.053e-08   1.000e+00
    92   3.25491e-01   9.221e-08   1.000e+00   1.000e+00   1.000e+00
    93   3.25490e-01   1.089e-08   0.000e+00   1.089e-08   1.000e+00
    94   3.25490e-01   1.074e-08   0.000e+00   1.074e-08   1.000e+00
    95   3.25490e-01   1.064e-08   0.000e+00   1.064e-08   1.000e+00
    96   3.25490e-01   1.061e-08   0.000e+00   1.061e-08   1.000e+00
    97   3.25490e-01   1.061e-08   0.000e+00   1.061e-08   1.000e+00
    98   3.25490e-01   1.062e-08   0.000e+00   1.062e-08   1.000e+00
    99   3.25490e-01   1.064e-08   0.000e+00   1.064e-08   1.000e+00
   100   3.25490e-01   1.066e-08   0.000e+00   1.066e-08   1.000e+00

Total time (s) = 13.29
---------------------------------------------------------

And finally we display the reconstructed image

plt.figure()
plt.semilogy(Sx, 'k', label=r'$||X||_*$=%.2f' % np.sum(Sx))
plt.semilogy(Sy, 'r', label=r'$||Y||_*$=%.2f' % np.sum(Sy))
plt.semilogy(Spg, 'b', label=r'$||X_{pg}||_*$=%.2f' % np.sum(Spg))
plt.semilogy(Spgc, 'g', label=r'$||X_{pgc}||_*$=%.2f' % np.sum(Spgc))
plt.legend()
plt.tight_layout()

fig, axs = plt.subplots(1, 4, figsize=(14, 6))
axs[0].imshow(X, cmap='gray')
axs[0].set_title('True')
axs[1].imshow(Y, cmap='gray')
axs[1].set_title('Masked')
axs[2].imshow(Xpg, cmap='gray')
axs[2].set_title('Reconstructed reg.')
axs[3].imshow(Xpgc, cmap='gray')
axs[3].set_title('Reconstructed constr.')
fig.tight_layout()
  • lowrankcompletion
  • True, Masked, Reconstructed reg., Reconstructed constr.

Total running time of the script: (0 minutes 27.185 seconds)

Gallery generated by Sphinx-Gallery