pyproximal.Huber#
- class pyproximal.Huber(alpha)[source]#
Huber norm proximal operator.
Proximal operator of the Huber norm defined as \(H_\alpha(\mathbf{x}) = \sum_i H_\alpha(x_i)\) where:
\[\begin{split}H_\alpha(x_i) = \begin{cases} \frac{|x_i|^2}{2 \alpha}, & |x_i| \leq \alpha \\ |x_i| - \frac{\alpha}{2}, & |x_i| > \alpha \end{cases}\end{split}\]which behaves like a \(\ell_2^2\) norm for \(|x_i| \leq \alpha\) and a \(\ell_1\) norm for \(|x_i| > \alpha\).
- Parameters
- alpha
float
Huber parameter
- alpha
Notes
The Huber proximal operator is defined as:
\[\begin{split}\prox_{\tau H_\alpha(\cdot)}(\mathbf{x}) = \begin{cases} \prox_{\frac{\tau}{2 \alpha} |x_i|^2}(x_i), & |x_i| \leq \alpha \\ \prox_{\tau |x_i|}(x_i), & |x_i| > \alpha \end{cases}\end{split}\]Methods
__init__
(alpha)affine_addition
(v)Affine addition
chain
(g)Chain
grad
(x)Compute gradient of the Moreau envelope of the function.
postcomposition
(sigma)Postcomposition
precomposition
(a, b)Precomposition
prox
(**kwargs)proxdual
(**kwargs)