pyproximal.TV#
- class pyproximal.TV(dims, sigma=1.0, niter=10, rtol=0.0001, **kwargs)[source]#
TV Norm proximal operator.
Proximal operator for the TV norm defined as: \(f(\mathbf{x}) = \sigma ||\mathbf{x}||_{\text{TV}}\).
- Parameters
- dims
tuple
Number of samples for each dimension (
None
if only one dimension is available)- sigma
int
, optional Multiplicative coefficient of TV norm
- niter
int
orfunc
, optional Number of iterations of iterative scheme used to compute the proximal. This can be a constant number or a function that is called passing a counter which keeps track of how many times the
prox
method has been invoked before and returns theniter
to be used.- rtol
float
, optional Relative tolerance for stopping criterion.
- dims
Notes
The proximal algorithm is implemented following [1].
- 1
Beck, A. and Teboulle, M., “Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems”, 2009.
Methods
__init__
(dims[, sigma, niter, rtol])affine_addition
(v)Affine addition
chain
(g)Chain
grad
(x)Compute gradient
postcomposition
(sigma)Postcomposition
precomposition
(a, b)Precomposition
prox
(*args, **kwargs)proxdual
(**kwargs)